3.55 \(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{2/3}} \, dx\)

Optimal. Leaf size=142 \[ -\frac {3 b (A-2 C) \sin (c+d x) \, _2F_1\left (\frac {1}{2},\frac {5}{6};\frac {11}{6};\cos ^2(c+d x)\right )}{5 d \sqrt {\sin ^2(c+d x)} (b \sec (c+d x))^{5/3}}-\frac {3 B \sin (c+d x) \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right )}{2 d \sqrt {\sin ^2(c+d x)} (b \sec (c+d x))^{2/3}}+\frac {3 C \tan (c+d x)}{d (b \sec (c+d x))^{2/3}} \]

[Out]

-3/5*b*(A-2*C)*hypergeom([1/2, 5/6],[11/6],cos(d*x+c)^2)*sin(d*x+c)/d/(b*sec(d*x+c))^(5/3)/(sin(d*x+c)^2)^(1/2
)-3/2*B*hypergeom([1/3, 1/2],[4/3],cos(d*x+c)^2)*sin(d*x+c)/d/(b*sec(d*x+c))^(2/3)/(sin(d*x+c)^2)^(1/2)+3*C*ta
n(d*x+c)/d/(b*sec(d*x+c))^(2/3)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {4047, 3772, 2643, 4046} \[ -\frac {3 b (A-2 C) \sin (c+d x) \, _2F_1\left (\frac {1}{2},\frac {5}{6};\frac {11}{6};\cos ^2(c+d x)\right )}{5 d \sqrt {\sin ^2(c+d x)} (b \sec (c+d x))^{5/3}}-\frac {3 B \sin (c+d x) \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right )}{2 d \sqrt {\sin ^2(c+d x)} (b \sec (c+d x))^{2/3}}+\frac {3 C \tan (c+d x)}{d (b \sec (c+d x))^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(2/3),x]

[Out]

(-3*b*(A - 2*C)*Hypergeometric2F1[1/2, 5/6, 11/6, Cos[c + d*x]^2]*Sin[c + d*x])/(5*d*(b*Sec[c + d*x])^(5/3)*Sq
rt[Sin[c + d*x]^2]) - (3*B*Hypergeometric2F1[1/3, 1/2, 4/3, Cos[c + d*x]^2]*Sin[c + d*x])/(2*d*(b*Sec[c + d*x]
)^(2/3)*Sqrt[Sin[c + d*x]^2]) + (3*C*Tan[c + d*x])/(d*(b*Sec[c + d*x])^(2/3))

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(b \sec (c+d x))^{2/3}} \, dx &=\frac {B \int \sqrt [3]{b \sec (c+d x)} \, dx}{b}+\int \frac {A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{2/3}} \, dx\\ &=\frac {3 C \tan (c+d x)}{d (b \sec (c+d x))^{2/3}}+(A-2 C) \int \frac {1}{(b \sec (c+d x))^{2/3}} \, dx+\frac {\left (B \sqrt [3]{\frac {\cos (c+d x)}{b}} \sqrt [3]{b \sec (c+d x)}\right ) \int \frac {1}{\sqrt [3]{\frac {\cos (c+d x)}{b}}} \, dx}{b}\\ &=-\frac {3 B \cos (c+d x) \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right ) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{2 b d \sqrt {\sin ^2(c+d x)}}+\frac {3 C \tan (c+d x)}{d (b \sec (c+d x))^{2/3}}+\left ((A-2 C) \sqrt [3]{\frac {\cos (c+d x)}{b}} \sqrt [3]{b \sec (c+d x)}\right ) \int \left (\frac {\cos (c+d x)}{b}\right )^{2/3} \, dx\\ &=-\frac {3 B \cos (c+d x) \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\cos ^2(c+d x)\right ) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{2 b d \sqrt {\sin ^2(c+d x)}}-\frac {3 (A-2 C) \cos ^2(c+d x) \, _2F_1\left (\frac {1}{2},\frac {5}{6};\frac {11}{6};\cos ^2(c+d x)\right ) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{5 b d \sqrt {\sin ^2(c+d x)}}+\frac {3 C \tan (c+d x)}{d (b \sec (c+d x))^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.94, size = 173, normalized size = 1.22 \[ \frac {3 e^{-i d x} (\sin (d x)-i \cos (d x)) \sqrt [3]{b \sec (c+d x)} \left ((A-2 C) e^{i (c+d x)} \sqrt [3]{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {5}{3};-e^{2 i (c+d x)}\right )-2 A \cos (c+d x)+4 B \sqrt [3]{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{6},\frac {1}{3};\frac {7}{6};-e^{2 i (c+d x)}\right )+4 i C \sin (c+d x)+4 C \cos (c+d x)\right )}{4 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(2/3),x]

[Out]

(3*(b*Sec[c + d*x])^(1/3)*((-I)*Cos[d*x] + Sin[d*x])*(-2*A*Cos[c + d*x] + 4*C*Cos[c + d*x] + 4*B*(1 + E^((2*I)
*(c + d*x)))^(1/3)*Hypergeometric2F1[1/6, 1/3, 7/6, -E^((2*I)*(c + d*x))] + (A - 2*C)*E^(I*(c + d*x))*(1 + E^(
(2*I)*(c + d*x)))^(1/3)*Hypergeometric2F1[1/3, 2/3, 5/3, -E^((2*I)*(c + d*x))] + (4*I)*C*Sin[c + d*x]))/(4*b*d
*E^(I*d*x))

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {1}{3}}}{b \sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(2/3),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c))^(1/3)/(b*sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {2}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(2/3),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(2/3), x)

________________________________________________________________________________________

maple [F]  time = 0.74, size = 0, normalized size = 0.00 \[ \int \frac {A +B \sec \left (d x +c \right )+C \left (\sec ^{2}\left (d x +c \right )\right )}{\left (b \sec \left (d x +c \right )\right )^{\frac {2}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(2/3),x)

[Out]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(2/3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\left (b \sec \left (d x + c\right )\right )^{\frac {2}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(2/3),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/(b*sec(d*x + c))^(2/3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{2/3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(2/3),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(2/3), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {2}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(2/3),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/(b*sec(c + d*x))**(2/3), x)

________________________________________________________________________________________